14 research outputs found

    A series multi-step approach for operation Co-optimization of integrated power and natural gas systems

    Get PDF
    Power to gas units and gas turbines have provided considerable opportunities for bidirectional interdependency between electric power and natural gas infrastructures. This paper proposes a series of multi-step strategy with surrogate Lagrange relaxation for operation co-optimization of an integrated power and natural gas system. At first, the value of coordination capacity is considered as a contract to avoid dysfunction in each system. Then, the uncertainties and risks analysis associated with wind speed, solar radiation, and load fluctuation are implemented by generating stochastic scenarios. Finally, before employing surrogate Lagrange relaxation, the non-linear and non-convex gas flow constraint is linearized by two-dimension piecewise linearization. In the proposed procedure, constraints for energy storages and renewable energy sources are included. Two case studies are employed to verify the effectiveness of the proposed method. The surrogate Lagrange relaxation approach with coordination branch &amp; cut method enhances the accuracy of convergence and can effectively reduce the decision-making time.</p

    A Mixed Epistemic-Aleatory Stochastic Framework for the Optimal Operation of Hybrid Fuel Stations

    Get PDF
    The fast development of technologies in the smart grids provides new opportunities such as co-optimization of multi-energy systems. One of the new concepts that can utilize multiple energy sources is a hybrid fuel station (HFS). For instance, an HFS can benefit from energy hubs, renewable energies, and natural gas sources to supply electric vehicles along with natural gas vehicles. However, the optimal operation of an HFS deals with uncertainties from different sources that do not have similar natures. Some may lack in term of historical data, and some may have very random and unpredictable behavior. In this study, we present a stochastic mathematical framework to address both types of these uncertainties according to the innate nature of each uncertain variable, namely: epistemic uncertainty variables (EUVs) and aleatory uncertainty variables (AUVs). Also, the imprecise probability approach is introduced for EUVs utilizing the copula theory in the process, and a scenario-based approach combining Monte Carlo simulation with Latin Hypercube sampling is applied for AUVs. The proposed framework is employed to address the daily operation of a novel HFS, leading to a two-stage mixed-integer linear programming problem. The proposed approach and its applicability are verified using various numerical simulations

    Online Multi-Level Energy Management Strategy Based on Rule-Based and Optimization-Based Approaches for Fuel Cell Hybrid Electric Vehicles

    No full text
    This paper introduces an online multi-level energy management strategy (EMS) based on proposed rule-based and optimization-based approaches for fuel hybrid electric vehicles, including fuel cell, battery, and ultracapacitor systems. Our approach combines equivalent consumption minimization, state machine control, operational mode control, and fuzzy logic control methods. The proposed multi-level EMS reduces fuel consumption, enhances fuel cell operating time in a high-efficiency range, reduces battery power fluctuations, and improves maintaining the battery state of charge (SOC). The proposed EMS is compared with the optimized-fuzzy logic control (Opt-FLC) method. The results show a reduction in fuel consumption, battery power fluctuations, and the SOC difference between the start and end of the driving cycle, compared to Opt-FLC. Hence, fuel economy improvement and lifetime enhancement of hybrid energy storage system are the significant outcomes of new proposed multi-level EMS

    Performance analysis of organic solar cells: Opto-electrical modeling and simulation

    Get PDF
    In this paper, the effect of mobility and active layer thickness on the properties of bulk heterojunction solar cells have been investigated using the drift-diffusion model. It was observed that open circuit voltage and power conversion efficiency are affected by two loss mechanisms. The recombination of charge carriers in wrong contacts destroys photogenerated electron-hole pairs, and the bulk recombination increases the act of coupling between electron-hole pairs with different binding energies and consequently lowers the open circuit voltage. The first loss mechanism rises as the mobility of each of the two carriers increases. The bulk recombination not only depends on the slow carrier mobility but also affected by the mobility balance of two carriers. Thus, it generates two optimal points for power conversion efficiency at none unity electron to hole mobility ratio. In the active layer, light does not get absorbed uniformly, and the profile of the photogenerated excitons depends on the device thickness. Therefore, similar changes in the electron and hole mobility do not bring about the same changes in power conversion efficiency. Also, this study indicates that with the simultaneous increase of mobility and thickness, considerable enhancement in the efficiency of the bulk heterojunction solar cells would be achieved

    Energy storage device sizing and energy management in building‐applied photovoltaic systems considering battery degradation

    No full text
    Abstract This study aims to develop an optimization strategy for determining the optimal type and capacity of batteries in a building‐applied photovoltaic system, taking into account battery degradation, consumption profiles, and regional solar irradiation. Key performance indicators such as peak shaving, savings, net present value, self‐consumption, return on investment, and payback period are examined. The best trade‐off among these indicators is determined using the fuzzy decision‐making method. A study was conducted using real data from Kpenergy Company, focusing on a building with a 50 kW photovoltaic system located in Stockholm. Three cases were examined in MATLAB software, each categorized based on the type of contract between the utility (Vattenfall Company) and the subscriber. The results of these case studies highlight the effectiveness of the proposed optimization approach. Using the proposed approach, optimal batteries are determined, minimizing subscriber costs while maximizing profit

    Participation of Electric Vehicles in a Delay-Dependent Stability Analysis of LFC Considering Demand Response Control

    No full text
    Today, time-varying delays may result from a communication network’s engagement in frequency control services. These delays have an impact on the effectiveness of the load frequency control (LFC) system, which can occasionally lead to power system instability. The electric vehicle (EV) can be used as a beneficial source for the LFC system with the development of demand-side response due to its vehicle-to-grid capacity. Although demand response control has certain advantages for the power system, communication networks used in LFC systems result in time delays that reduce the stability of the LFC schemes. A stability study of an LFC system, comprising an EV aggregator with two additive time-varying delays, is demonstrated in this work. An enhanced Lyapunov–Krasovskii functional (LKF), which incorporates time-varying delays using the linear matrix inequality approach, is used to perform a delay-dependent stability analysis of the LFC to determine the stability zone and criterion. In conclusion, the efficiency of the proposed stability criterion is validated by making use of the thorough simulation findings

    Improved Hybrid Switched Inductor/Switched Capacitor DC–DC Converters

    No full text

    Optimal energy management and sizing of renewable energy and battery systems in residential sectors via a stochastic MILP model

    Get PDF
    Energy supply through integrated renewable energy sources (RESs) and battery systems will be of higher importance for future residential sectors. Optimal energy management and sizing for the components of residential systems can enhance efficiency, self-suffiency, and meanwhile can be cost-effective by reducing investment as well as operating costs. Accordingly, this paper proposes an exhaustive optimization model for determining the capacity of RESs, namely: wind turbines and photovoltaic (PV) systems. In this study, batteries and electric vehicles (EVs) are utilized in line with other sources to capture fluctuations of RESs. To model the uncertainties of RESs, energy prices, and load demands a linearized stochastic programming framework is applied. The proposed framework involves long-term and efficient resource development alongside with short-term management and utilization of these resources for supplying the demand load. In our study, we utilize the roulette wheel mechanism (RWM) method as well as proper probability distribution functions (PDFs) to generate scenarios for all sources of uncertainties, including wind turbines, PV systems, demand, and electricity market price. The approach is verified in two different cases, including an individual home and a larger micro-grid (MG). The results of multiple numerical simulations demonstrate the effectiveness of the proposed stochastic model

    Day-Ahead Scheduling of Multi-Energy Microgrids Based on a Stochastic Multi-Objective Optimization Model

    No full text
    Dealing with multi-objective problems has several interesting benefits, one of which is that it supplies the decision-maker with complete information regarding the Pareto front, as well as a clear overview of the various trade-offs that are involved in the problem. The selection of such a representative set is, in and of itself, a multi-objective problem that must take into consideration the number of choices to show the uniformity of the representation and/or the coverage of the representation in order to ensure the quality of the solution. In this study, day-ahead scheduling has been transformed into a multi-objective optimization problem due to the inclusion of objectives, such as the operating cost of multi-energy multi-microgrids (MMGs) and the profit of the Distribution Company (DISCO). The purpose of the proposed system is to determine the best day-ahead operation of a combined heat and power (CHP) unit, gas boiler, energy storage, and demand response program, as well as the transaction of electricity and natural gas (NG). Electricity and gas are traded by MGs with DISCO at prices that are dynamic and fixed, respectively. Through scenario generation and probability density functions, the uncertainties of wind speed, solar irradiation, electrical, and heat demands have been considered. By using mixed-integer linear programming (MILP) for scenario reduction, the high number of generated scenarios has been significantly reduced. The ɛ-constraint approach was used and solved as mixed-integer nonlinear programming (MINLP) to obtain a solution that meets the needs of both of these nonlinear objective functions
    corecore